
FLOW AND CONDUCTION OF INHOMOGENEOUS MEDIA. 

II. VARIATION OF THE BASIC MODEL OF AN INHOMOGENEOUS MEDIUM 

D. P. Volkov, G. N. Dul'nev, 
Yu. P. Zarichnyak, and B. L. Muratova 

UDC 536.21.02 

On the basis of a basic model of an inhomogeneous medium, different variations 
are proposed. Analytical dependences are obtained for the conduction of the in- 
homogeneous medium and the results of calculation and experiment are compared. 

In [i], a model of a binary inhomogeneous medium with randomlydistributed components 
was proposed; the mathematical realization of the model involves a combination of flow theory 
and the~method of reduction to an elementary cell. The pattern of the change in structure of 
such a medium is based on thefo!lowing concepts: with change in volume concentration m, of 
the first component in the second, isolated inclusions or clusters (IC) of the first com- 
ponent are formed: at some critical concentration m, = mc (flow threshold), the isolated Clus- 
ters coalesce to an infinite cluster (InC). The relative dimensions of the IC are modeled 
here in the form of a cube of side 

I~ = l~/L = ~ ~ ,  0 < ml < too, 
- -  3 I~ = {/'-~c, mc<~ml~ 0.5" 

(1) 

The dashed curve in Fig. 1 shows the change in relative dimension of the central core of the 
cluster in the range 0 5 m, s 0.5. On reaching the flow threshold mL = m c, bridges appear 
between the IC; these are modeled in the form of rods of square cross section (12,) of length 
L -- ~2. It is assumed in the model that when m, > mc the dimension la of the central core 
remains unchanged, while the cross-section area Z2 of the rod varies according to the law 

[i] 
~1=~=(lI /L)2= ( ml--mc ) 1'6 

�9 . ' l _ m c  ( 2 )  

In Eq. (2), account is taken of the entire complexity of the variation in structure of the 
infinite cluster and the probabilistic character of its formation. When m, = 0.5, the struc- 
ture is converted into a system with interpenetrating components, when l, = Z2. After the 
formation of a structure with interpenetrating components, increase in m, leads in the model 
to uniform increase in rod dimensions of the first component and decrease in the second, 
~ntil m, = i, i.e., the binary system is converted to a homogeneous system. 
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Fig. 1 Dependence of the rela- 
tive dimension 12 of the central 
core of the cluster on the volume 
concentration of the conducting 
component m~ plotted according to 
Eq. (i) (dashed curve) and Eqs. 
(4) and (5) (continuous curve). 
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Fig. 2. Elementary cell of the third variation of the basic model: 1-12) individual 

sections of the elementary cell. 

Fig. 3. Circuit diagram of the thermal resistances of the individual sections. 

first component and decrease in the second, until ml = I, i.e., the binary system is converted 

to a homogeneous system. 

The following formula was proposed in [i] for calculating the conductivity of an inhomo- 

geneous medium 

A m I (I--~)~ -+-2 -~ga (3) 
- -  1 - - ( 1 - - ~ ) 7 1  ' 

where the  p a r a m e t e r s ~ ,  and ~2 a re  determined from Eqs. (1) and (2) and 

AS = 0 when 0 < ml < m c and AS = 0, ~2 = ~ when 0.5 < mx < i. The assumption of constancy 
of ~a in the range m c < m, < 0.5 adopted in the model in Eq. (i) leads to violation of the 
condition of equality of the volume concentration of components in the model and in the real 

system. 

As shown by comparison with numerical modeling, Eqs. (i)-(3) allow results with an ac- 
curacy sufficient for practical purposes to be obtained [2]. In what follows, the noted de- 
ficiencies in the constructuion of the model and its mathematical realization are removed by 
introducing the correction function H = H(ml, v). In addition~ it is taken into account that 
in real structures, the nonconducting component at first forms an infinite cluster in the con- 
ducting component when mx Z 0.5, and then forms an isolated cluster when m, < i -- m c. There- 
fore, Eq. (3) takes a more general form and the model proposed in [2] is described as the 

basic model. 

On the basis of the fundamental ideas of constructing the basic model, different vari- 
ations may be proposed, distinguished by introduction of certain additional elements in the 
basic model or by different methods of calculating the individual parameters. Thus, the model 
considered in [i] is called the first variation of the basic model; its principal differences 
from the basic model are noted above and in [2]. Other possible variations of the basic 

model will now be considered. 

In the second variation of the basic model, the requirement of constancy of the dimen- 
sion ~2 in the concentration range m c < mx < 0.5 is lifted, so as to maintain equality of the 
volume concentrations in the model and in the real system. Remember that this requirement 
was imposed in the first variation of the basic model [I] and that the resulting errors were 
compensated by the correction function H in the basic model [2]. In the present case, the 
relative dimension of the central core of the infinite cluster is determined from two equa- 
tions: the first relates the volume concentration to the geometric parameters of the model 

= -%) (4) 
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Fig. 4. Comparison of the conductivity of extremely inhomogeneous media 
(v = 0) as a function of the concentration of the conducting component: 1-3) 
according to Eq. (i0) with m c = 0.12, k = 1.3 (i), 0.18 and 2.0 (2), 0.15 and 
1.6 (3); 4) results of computer modeling [!]; 5-7) experimental data: 5) NII,--Li 
[i]; 6) copper powder with alumina additions [6]; 7) tungsten bronze [4-5]. 

Fig. 5. Comparison of the results of calculations of the conductivity 
of binary inhomogeneous media: i, i', i") numerical calculation [2]; 2,2', 
2") second variation; 3, 3') third variation; 4) basic model and first vari- 
ation; 1-3) v = 0; 1'-3') 0.3; 1"-2") 0.7. 

and the second relates the cross section of the infinite cluster to the volume concentration 
of the first component. For this purpose, Eq. (2) is modified so that, when m, = 0.5 and 
Z, = Z2 = 0.5 (interpenetrating system), this equation would lead to the obvious result 

O,5--m~ " ( 5 )  

The continuous curve in Fig. i shows the dependence of the relative dimension ~a = f(m,) of 
the central core of the cluster. The conductivity for the second variation of the model is 
determined from Eq. (3), while the parameters ~, and ~2 are determined from Eqs. (4) and (5). 

In determining the conductivity for m, > 0.5, the subscripts of A i and m i are exchanged, 
i.e., the parameter v = A2/Az is replaced by ~' = A,/A2 and m, by (i -- m,). This allows 
the structure of the nonconducting component with m, > 0.5 to be made the same as the struc- 
ture of the conducting component with a concentration (i -- mz), i.e., both the structure and 
Eq. (3) take on the property of symmetry with respect to mz = m2 = 0.5. 

In the third variation of the basic model, the possibility of simultaneous existence of 
isolated and infinite clusters at m c < m, < 0.5 is taken into account. Suppose that in the 
concentration range 0 < mz < m c there exist two types of isolated clusters of different size. 
Assume that the smaller component occupies a fraction VIC = Z3 of the volume and remains in 
the form of an isolated cluster even at concentrations of the conducting component above the 
flow threshold m, > m c. The larger IC occupy a fraction V C = ~32 of the volume, which follows 
a linear law of change with increase in concentration of the conducting component 

mc= Vc/V = ~mx. (6) 

The proportionality factor ~ is chosen so that the relative dimension of the side of the 
core is 0.5 when the volume concentration of the conducting component is equal to the flow 
threshold (m, = m c) 

= O. 1251m c (7 )  

and then remains unchanged, forming the core of an infinite cluster. The chosen method of 
specifying the core dimensions of an infinite cluster ensures that, in the limiting case 
m, = 0.5, this model is identical with the well-known models of a structure with interpene- 
trating components [3]. If the concentration of the conducting component increases above 
the threshold value m c < m, ~ 0.5, the core of the infinite cluster, at a distance Z = (L -- 
Z2), grows connecting bridges, the cross section of which S, = Z2, is determined from Eq. 
(5). Thus, account is taken of the presence of some proportion of the volume with isolated 
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clusters when infinite clusters appear beyond the flow threshold. The volume concentration 
of the infinite cluster is found from Eqs. (4) and (5) and that of the isolated cluster from 
the formula 

m i c  = m~ - -  m m c ,  (8) 
w h i l e  S~ = 0 i n  t h e  v o l u m e - c o n c e n t r a t i o n  r a n g e  f rom z e r o  to  t h e  f l o w  t h r e s h o l d  and S~ i s  c a l -  
c u l a t e d  f rom Eq. (5) i n  t h e  r a n g e  mc < ml < 0 . 5 .  

To d e t e r m i n e  t h e  e f f e c t i v e  c o n d u c t i v i t y  o f  t h e  mode l ,  t h e  combined d i v i s i o n  o f  t h e  e l e -  
m e n t a r y  c e l l  by means of  i s o t h e r m a l  and a d i a b a t i c  p l a n e s  i s  employed  ( F i g .  2 ) ;  t h i s  a l l o w s  
t h e  c h a r a c t e r  o f  t h e  s t r e a m l i n e s  to  be  t a k e n  more p r e c i s e l y  i n t o  a c c o u n t  i n  t h e  model  [ 3 ] .  
An e q u i v a l e n t  d i a g r a m  of  t h e  c o n n e c t i o n s  be tween  the  r e s i s t a n c e s  o f  t h e  i n d i v i d u a l  s e c t i o n s  
i s  shown i n  F i g .  3. Then t h e  e f f e c t i v e  c o n d u c t i v i t y  o o f  t he  e l e m e n t a r y  c e l l  i s  

= [(RT 1 § RF1) -t  + (RF I ,+  RT1) -I + (R? 1 + R~ 1 + RF')-  tl - t  

+ [(RT 1 + RTI) -i + R~o + (R~ ~ + RT~)-*] -~, ~ = R - t  

Calculating the resistance of each section as the resistance of a plane wall and bearing in 
mind the dimension of the sections noted in Fig. 3, the following equation may be written 

+ ]~ +ql(1 --~) +v(I--/2)(/2--]~) + ~ +'(I--12---/~) + (9) 

+ 

If 0 < ml < mc,_then ~i = 0, ~2 = (~2maxm:/mc) I/3, ~s = (ml -- minC) I/~, min C ~ ~32. If m c < 
ml < 0.5, then ~i = 0.5[(mi -- mc)/(0.5 -- mc)]~ ~2 = 0.5; -~3 = (ml --mint) I/3, mInC _- 
~3amax + 3~2~( I- ~2max), 12max = 0.5. 

If the concentration of the conducting component exceeds 0.5, then m: and A: are replaced 
by m2 and A2 and the effective conductivity is then calculated from the same relations. 
The results of calculation by all the models are now compared with the experimental data 
and, above all, the extreme case ~ = 0 is considered. 

Experimental curves taken from [i, 4-7] for various inhomogeneous media of the basic 
dielectric-metal are shown in Fig. 4. The results of model experiments obtined by numerical 
methods for three-dimensional grids are taken from [I]. 

As shown in [I], the conductivity of the binary heterogeneous systems with v 2 i0 -2 is 
described by a dependence obtained by the method of machine modeling on a computer 

A ( m ~ - - m ~ )  k 
. . . . . . . . .  , mc = 0 ,15 •  k =  1 . 6 •  
A1 1 - - m ~  (I0) 

Curves calculated for the limiting parameter values m c = 0.12 and 0.18 and k = 1.2 and 2.0 
and also for the mean values m c = 0.15 and k = 1.6 are shown in Fig. 4. The limiting curves 
cover the whole range of experimental data, while the mean values of the parameters m c and k 
allow the most probable trend of the curve in Eq. (i0) to be determined. 

The results of numerical modeling [7] of the conductivity of binary inhomogeneous media 
are compared with calculations for the basic model and its variations in Fig. 5. 

As follows from Eqs. (4) and (5), the most reliable results come from the basic model 
[2] and its first variation -- Eq. (3). The second variation of the basic model, calculated 
from Eqs. (3)-(5), leads to a nonmonotonic trend in the dependence of the conductivity on 
the concentration. The third variation of the basic model is calculated from Eq. (9) and 
leads to conductivity values that coincide only with the upper limit of the range of experi- 
mental data. This limit for 9 = 0 differs from the most reliable results by 90% when m~ = 0.3, 
by 20% when ml = 0.5, and by 12% when m: = 0.85. Comparison of the various formulas allows 
the following conclusions to be drawn. The conductivity of inhomogeneous media should be 
calculated from the formula of [2] for the basic model or from Eq. (3) for the first vari- 
ation, although Eq. (3) is based on assumptions that are insufficiently correct. 
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If it is necessary to distinguish isolated clusters in explicit form, as well as infin- 
ite clusters, Eq. (9) for the third variation of the basic model may be used, bearing in mind 
that the results of the calculation will be overestimated. 

NOTATION 

m~, volume concentration of the first component; mc, threshold concentration (flow thresh- 
old); ~, ~2, L, l', linear dimensions of the cluster model; S~, $2, Ss, S~, AS, cross-sec- 
tional areas of cluster; VIC , VC, total volume and core volume of isolated cluster; A, conduc- 
tivity of inhomogeneous medium~ A~, A2, ~, conductivity of first and second components and 
their ratio; H, correction function; ~, proportionality factor; o, conductivity of elementary 
cell; Ri, thermal resistance of i-th section of elementary cell. 
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EFFECT OF ELECTROLYTES ON THERMAL MOISTURE TRANSPORT IN CAPILLARY-POROUS MEDIA 

A. M. Abramets, I. I. Lishtvan, UDC 661.12:662.730+624. 
and N. V. Churaev 139:541.183 

Experimental data on the effect of electrolytes upon thermal moisture mobility 
in quartz sand and cellulose are presented. The results are interpreted from 
the viewpoint of change in properties of moisture boundary layers. 

As is we!l known [i], as the moisture content of a material U varies, the thermogradient 
coefficient ~ = dU/dT passes through a maximum, corresponding to the greatest mobility of 
moisture acted upon by a temperature gradient. As U § 0 the moisture mobility decreases due 
to an increase in the binding energy of surface forces, while as U + Uo the possibility of 
change in mass content dU under the action of dT decreases. Thus, for example, at U = Uo 
only thermal circulation of the mass is possible, with no redistribution over the body volume 
(dU = 0), which corresponds to 6 = 0. Moreover, with increase in U there is a decrease in 
the liquid--gas interface surface, which determines thermal moisture transport under the in- 
fluence of a surface tension gradient ~/~T. The latter induces a flow of capillary moisture 
caused by a capillary tension gradient, as well as a film thermocapillary flow. 

Thus, the largest values of ~ correspond to a liquid state in a porous body in which the 
pores are not completely filled by moisture and there is a sufficiently developed liquid--gas 
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